

MECHANISTIC SIGNIFICANCE OF THE MAGNITUDE OF CROSS-INTERACTION CONSTANTS

IKCHOON LEE

Department of Chemistry, Inha University, Inchon 402-751, Korea

The relationship between the magnitude of the cross-interaction constant, $|\rho_{ij}|$, and the force constant of activation, ΔF_{ij}^\ddagger , has been derived and their equivalence has been shown, where ΔF_{ij}^\ddagger = (force constant in the transition state, F_{ij}^\ddagger) - (force constant in the ground state, F_{ij}^0). When bond formation is involved in the activation process, ΔF_{ij}^\ddagger becomes equal to F_{ij}^\ddagger and $|\rho_{ij}|$ is inversely related to the distance, r_{ij}^\ddagger , between reaction centres R_i and R_j . However, for bond-breaking processes, interpretation of $|\rho_{ij}|$ becomes complicated, since $\Delta F_{ij}^\ddagger = F_{ij}^\ddagger - F_{ij}^0$ may be negative or positive depending on the relative size of F_{ij}^\ddagger and F_{ij}^0 . Some examples of re-examination are given for various cases of $|\rho_{ij}|$ in the bond-breaking processes.

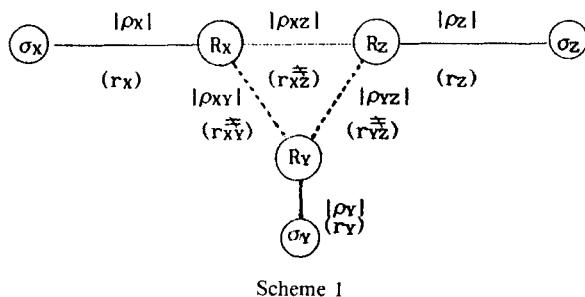
INTRODUCTION

For several years we have been involved with developing the use of cross-interaction constants, ρ_{ij} in equation (1), as a mechanistic tool for organic reactions in solution:¹

$$\log(k_{ij}/k_{HH}) = \rho_i \sigma_i + \rho_j \sigma_j + \rho_{ij} \sigma_i \sigma_j \quad (1)$$

As a typical example, we have attempted to correlate the magnitude $|\rho_{ij}|$ with the transition-state (TS) structure, especially of S_N2 reactions (Scheme 1).²

In contrast to the simple Hammett coefficient ρ_i (or ρ_j), which is of limited use within a particular family of closely related reactions,^{2,3} we found that the magnitude of ρ_{ij} provides a quantitative measure of bond length r_{ij} between reaction centres R_i and R_j ($i, j = X, Y$ or Z in Scheme 1) when both substituents i and j (denoted σ_i and σ_j in Scheme 1) interact with their respective reaction centres simultaneously in the TS.^{1,2}



On the other hand, theoretical analysis has shown⁴ that the positive stretching force constants F_{ij}^\ddagger of the symmetric vibrational modes in the TS are correlated with the bond length r_{ij}^\ddagger by an equation similar to the empirical expression known as Badger's rule:⁵

$$r_{ij}^\ddagger = \alpha - \beta \log F_{ij}^\ddagger \quad (2)$$

where α and β are constant for a related series of bonds.

If we assume a sufficiently small change in the distance, δr_i , due to a variation of substituent, $\delta \sigma_i$, a linear correlation between the two may be assumed to exist.⁶ It has indeed been shown based on the analysis of experimental data⁷ that the distance between the reaction centres in the TS varies (δr_i^\ddagger or δr_j^\ddagger) linearly with the substituent constant in a reactant, $\delta \sigma_i$ or $\delta \sigma_j$:

$$\delta r_i^\ddagger = a \delta \sigma_i \text{ and } \delta r_j^\ddagger = b \delta \sigma_j \quad (3a)$$

$$\delta r_{ij}^\ddagger = \delta r_i^\ddagger + \delta r_j^\ddagger = a \delta \sigma_i + b \delta \sigma_j \quad (3b)$$

where δr_i^\ddagger and δr_j^\ddagger represent the portions of δr_{ij}^\ddagger due to changes in σ_i and σ_j , respectively. In particular for identity exchange reactions, equation (4) with $XN = LZ$, where X , Y and Z are the substituents in nucleophile (N), substrate (R) and leaving group (L) respectively, the constants a and b are found to be negative, and the small distance changes, δr_i , are linearly correlated with $\delta \sigma_i$:⁷

$$XN + YRLZ = XNRY + LZ \quad (4)$$

Hence a more electron-donating substituent, e.g. $X = Z = p$ -MeO for which $\sigma_X = \sigma_Z < 0$, leads to a greater distance between the two identical groups in

the TS, $\delta r_{XZ}^t \approx 2\delta r_{XY}^t \approx 2\delta r_{YZ}^t > 0$, since $\alpha < 0$ and $\sigma_X = \sigma_Z < 0$. Conversely, a more electron-withdrawing substituent, e.g. $X = Z = p\text{-NO}_2$, leads to a decrease in the distance, $\delta r_{XZ}^t \approx 2\delta r_{XY}^t \approx 2\delta r_{YZ}^t < 0$.

It is by no means clear, however, how the magnitude of cross-interaction constant, $|\rho_{i,j}|$, is correlated with the distance between the reaction centres in the TS, r_{ij}^t . A clear understanding of the correlation between the two should provide a sound basis for the application of $|\rho_{ij}|$ as a quantitative measure of the TS structure. In this work, we show that $|\rho_{ij}|$ is related to the difference in the force constant between the initial and transition states, ΔF_{ij}^t , which may be termed a 'force constant of activation,' and the mechanistic interpretation of $|\rho_{ij}|$ should therefore be re-examined in accordance with this postulate.

SIGNIFICANCE OF THE MAGNITUDE OF CROSS-INTERACTION CONSTANTS

Let us consider a system consisting of two interacting fragments i and j with substituents σ_i and σ_j and reaction centres R_i and R_j at a distance r_{ij} (Scheme 2). One can define the potential energy of activation, ΔU^t , as the potential energy difference between ground state (GS) and transition state (TS).⁸ The potential energy of the GS, U^0 , is expanded in a Taylor series around a reference point $\sigma_i = \sigma_j = 0$ (U_0^0) which is not necessarily at the minimum point of the potential energy surface. Neglecting cubic and higher terms (for sufficiently small displacement, higher terms are negligible in general⁹),

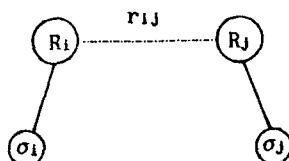
$$\delta U^0 = U^0 - U_0^0 = U_i^0 \sigma_i + U_j^0 \sigma_j + \frac{1}{2} U_{ii}^0 \sigma_i^2 + \frac{1}{2} U_{jj}^0 \sigma_j^2 + U_{ij}^0 \sigma_i \sigma_j \quad (5)$$

Likewise for the potential energy of the TS,

$$\delta U^t = U^t - U_0^t = U_i^t \sigma_i + U_j^t \sigma_j + \frac{1}{2} U_{ii}^t \sigma_i^2 + \frac{1}{2} U_{jj}^t \sigma_j^2 + U_{ij}^t \sigma_i \sigma_j \quad (6)$$

The difference of the two gives the variation in the potential energy of activation ($\delta\Delta U^t$) due to substituents σ_i and σ_j from the potential energy of activation at the reference point, ΔU_0^t . Hence δ and Δ represent the variation of a quantity due to changes in substituent, $\delta\sigma_i$ or $\delta\sigma_j$, and in state from GS to TS, respectively.

$$\delta\Delta U^t = \delta(U^t - U^0) = \Delta U_i^t \sigma_i + \Delta U_j^t \sigma_j + \frac{1}{2} \Delta U_{ii}^t \sigma_i^2 + \frac{1}{2} \Delta U_{jj}^t \sigma_j^2 + \Delta U_{ij}^t \sigma_i \sigma_j \quad (7)$$



Scheme 2

Obviously,

$$\Delta U_i^t = \left(\frac{\partial \Delta U^t}{\partial \sigma_i} \right)_0, \quad \Delta U_{ij}^t = \left(\frac{\partial^2 \Delta U^t}{\partial \sigma_i \partial \sigma_j} \right)_0, \text{ etc.} \quad (8)$$

On the other hand, a Taylor expansion of $\log(k_{ij}/k_{HH})$ up to second order is given by¹

$$\log \left(\frac{k_{ij}}{k_{HH}} \right) = - \frac{\delta \Delta G^t}{2 \cdot 3 RT} = \rho_i \sigma_i + \rho_j \sigma_j + \frac{1}{2} \rho_{ii} \sigma_i^2 + \frac{1}{2} \rho_{jj} \sigma_j^2 + \rho_{ij} \sigma_i \sigma_j \quad (9a)$$

$$= - \frac{1}{2 \cdot 3 RT} \{ \Delta U_i^t \sigma_i + \Delta U_j^t \sigma_j + \frac{1}{2} \Delta U_{ii}^t \sigma_i^2 + \frac{1}{2} \Delta U_{jj}^t \sigma_j^2 + \Delta U_{ij}^t \sigma_i \sigma_j \} + \Delta \Theta(T) \quad (9b)$$

where k_{ij} is the rate constant for a reaction with dual substituents σ_i and σ_j in the reactants, $\rho_i = (\partial \log k_{ij}/\partial \sigma_i)_0$, $\rho_{ij} = (\partial^2 \log k_{ij}/\partial \sigma_i \partial \sigma_j)_0$, etc., and $\Delta \Theta(T)$ is a term which includes corrections for zero-point energies and other temperature-dependent factors including entropy terms.^{8,10} For sufficiently small displacements from the reference point, $\delta r_i = a\sigma_i$ and $\delta r_j = b\sigma_j$ with $\delta r_i + \delta r_j = \delta r_{ij}$, where a and b are constants^{6,7} [equations (3)], so that equations (8) become

$$\Delta U_i^t = \frac{1}{a} \left(\frac{\partial \Delta U^t}{\partial r_i} \right)_0 = \frac{1}{a} \Delta f_i^t \quad (10)$$

$$\Delta U_{ij}^t = \frac{1}{ab} \left(\frac{\partial^2 \Delta U^t}{\partial r_i \partial r_j} \right)_0 = \frac{1}{ab} \Delta F_{ij}^t$$

where Δf_i^t and ΔF_{ij}^t may be deemed the force and force constant of activation, respectively.

Thus, at a constant temperature, neglecting pure second-order terms,¹¹

$$\log \left(\frac{k_{ij}}{k_{HH}} \right) = \rho_i \sigma_i + \rho_j \sigma_j + \rho_{ij} \sigma_i \sigma_j \quad (11a)$$

$$= - \frac{1}{2 \cdot 3 RT} \left(\frac{1}{a} \Delta f_i^t \sigma_i + \frac{1}{b} \Delta f_j^t \sigma_j + \frac{1}{ab} \Delta F_{ij}^t \sigma_i \sigma_j \right) + \Delta \Theta(T) \quad (11b)$$

where $\Delta \Theta(T)$ can be a constant or negligible for substituent variations at constant temperature.¹² This means that we can ignore the temperature-dependent term, $\Delta \Theta(T)$. It is widely known and generally accepted that the Gibbs free energy changes, ΔG^t or ΔG^0 , brought about by *meta* and *para* substituents are virtually changes in ΔU^t or ΔU^0 since substituent does not greatly affect entropy changes, i.e. $\delta \Delta G^t \approx \delta \Delta U^t$ or $\delta \Delta G^0 \approx \delta \Delta U^0$ in solution-phase reactions.¹² Comparison of equations (11a) and (11b) indicates that the magnitudes of ρ_i and ρ_{ij} are related to the magnitudes of the force and force constant of activation, Δf_i^t and

ΔF_{ij}^\ddagger , respectively:

$$\begin{aligned} |\rho_i| &= A |\Delta f_i^\ddagger| \\ |\rho_{ij}| &= B |\Delta F_{ij}^\ddagger| \end{aligned} \quad (12)$$

where A and B are positive constants. Since the force constant F_{ij} is a change in the interaction (potential) energy between the two substituents σ_i and σ_j (through R_i and R_j) per unit distance changes, i.e. $\delta\Delta U_{ij}$ for $\delta r_1 = \delta r_2 = 1 \cdot 0$, ΔF_{ij}^\ddagger represents a change in the intensity of interaction from the GS to the TS, $\Delta I_{\text{int}}^\ddagger(i, j)$:

$$\begin{aligned} \Delta F_{ij}^\ddagger &= F_{ij}^\ddagger - F_{ij}^0 \\ &= (\text{intensity of interaction between } \sigma_i \text{ and } \sigma_j \text{ through } R_i \text{ and } R_j \text{ in the TS}) - (\text{intensity of interaction between } \sigma_i \text{ and } \sigma_j \text{ through } R_i \text{ and } R_j \text{ in the GS}) \\ &= I_{\text{int}}^\ddagger(i, j) - I_{\text{int}}^0(i, j) \\ &= \Delta I_{\text{int}}^\ddagger(i, j) \end{aligned} \quad (13)$$

Since force f is a product of the force constant, F , and displacement r , i.e. $\Delta f_i = F_{ij}\Delta r_j$, the use of $|\rho_i|$ ($\propto |\Delta f_i^\ddagger|$) as a measure of r_{ij} should be limited to the systems with a constant r_j ($\propto \sigma_j$), i.e. $\Delta r_j = \text{constant}$. Thus the $|\rho_i|$ values for different reaction series cannot be directly compared to deduce changes in r_{ij} unless $R(\sigma_j)$ is constant.^{1,3} This is why the simple Hammett's coefficient has a serious limitation in its scope of application as a measure of TS structure.

The relationship between the two quantities, $|\rho_i|$ and $|\rho_{ij}|$ (i.e. $|\Delta f_i^\ddagger|$ and $|\Delta F_{ij}^\ddagger|$) is similar to that between rate and rate constant, k_{ij} ; in general, rates for different reacting systems are legitimately compared at unit concentration of the reactants, i.e. using rate constants. This means that it is more appropriate to use $|\rho_{ij}|$ rather than $|\rho_i|$ for comparing the intensities of interaction between two reaction centres for different reacting systems. Since the change in the intensity of interaction, $\Delta I_{\text{int}}^\ddagger(i, j)$, is intimately related to the distance r_{ij} , the magnitude of ρ_{ij} provides a more general measure of the TS structure. In other words, the magnitude of ρ_{ij} can be a direct measure of the TS structure, whereas $|\rho_i|$ gives only a relative measure requiring the constancy of the other reaction centre, $R_j(\sigma_j)$.¹³

APPLICATION

Let us examine the significance of $|\rho_{ij}|$ in a typical S_N2 reaction, Scheme 1, where X, Y and Z fragments represent nucleophile, substrate and leaving group (LG), respectively.

For a rate-limiting bond-formation process, there will be no significant bond cleavage in the TS, $F_{YZ}^\ddagger = F_{YZ}^0$ and $\Delta F_{YZ}^\ddagger = 0$; according to equation (12) this will lead to a vanishing ρ_{YZ} value, $\rho_{YZ} = 0$.¹ Likewise, for a rate-limiting bond-breaking process, $F_{XY}^\ddagger = F_{XY}^0$ and $\Delta F_{XY}^\ddagger = 0$ so that $\rho_{XY} = 0$ ¹ [equation (12)].

Another special case is a reaction type in which the two substituents, σ_i and σ_j , can interact through multiple channels; if there are two interaction channels available, two force constant changes will result and give two separate ρ_{ij} values leading to a greater $|\rho_{ij}|$ when added together;¹ e.g.

$$\begin{aligned} |\rho_{ij}|(1) &= B |\Delta F_{ij}^\ddagger|(1) \\ |\rho_{ij}|(2) &= B' |\Delta F_{ij}^\ddagger|(2) \end{aligned}$$

[equation (12)], and hence

$$|\rho_{ij}|(\text{total}) = |\rho_{ij}|(1) + |\rho_{ij}|(2)$$

The resulting ρ_{ij} , $|\rho_{ij}|(\text{total})$, will be greater than that for any of the single-component channel:

$$|\rho_{ij}|(\text{total}) > |\rho_{ij}|(1) \text{ or } |\rho_{ij}|(2)$$

For $i, j = X, Y$ or X, Z , $F_{ij}^0 = 0$, since in the GS the nucleophile can be considered to be at an infinite distance:

$$\Delta F_{ij}^\ddagger = F_{ij}^\ddagger - F_{ij}^0 = F_{ij}^\ddagger = I_{\text{int}}^\ddagger(i, j)$$

Since

$$r_{ij} = \alpha + \beta \log\left(\frac{1}{F_{ij}}\right)$$

[equation (2)], it follows that

$$r_{ij}^\ddagger = \alpha + \beta \log\left(\frac{1}{F_{ij}^\ddagger}\right) = \alpha' + \beta' \log\left(\frac{1}{|\rho_{ij}|}\right) \quad (14)$$

The distance r_{ij}^\ddagger between R_i and R_j in the TS is a logarithmic inverse function of $|\rho_{ij}|$, provided that the distances r_i and r_j between R_i and σ_i and between R_j and σ_j , respectively, are kept constant during the activation process.¹ Hence the greater is $|\rho_{ij}|$, the shorter is the distance between the two reacting centres, R_i and R_j . Therefore, straightforward application of equation (14) is possible for the cases of $i, j = X, Y$ or X, Z , with the inverse relationship between r_{ij}^\ddagger and $|\rho_{ij}|$.^{1,2} It has been shown that the degree of bond formation is greater (i.e. r_{XY}^\ddagger is shorter) when $|\rho_{XY}|$ is greater² and the tighter the TS (the shorter is r_{XZ}^\ddagger) the greater is $|\rho_{XZ}|$.¹⁴ Such a simple relationship between r_{ij}^\ddagger and ρ_{ij} does not exist, however, for $i, j = Y, Z$ or for processes involving bond cleavage in the TS, and re-examination of the significance of the magnitude $|\rho_{YZ}|$ is necessary. In the bond-breaking process, $F_{ij}^\ddagger < F_{ij}^0$, i.e. the force constant (or intensity of interaction) decreases from GS to TS, since the distance between the two reacting centres increases in the TS:

$$\begin{aligned} \Delta F_{ij}^\ddagger &= F_{ij}^\ddagger - F_{ij}^0 < 0 \\ \Delta I_{\text{int}}^\ddagger(i, j) &= I_{\text{int}}^\ddagger(i, j) - I_{\text{int}}^0(i, j) < 0 \end{aligned}$$

The difference, however, will become greater, i.e. the magnitude of ΔF_{ij}^\ddagger or $\Delta I_{\text{int}}^\ddagger(i, j)$ increases, with the

degrees of bond cleavage, so that

$$|\rho_{YZ}| \propto |\Delta I_{int}^t(Y, Z)|$$

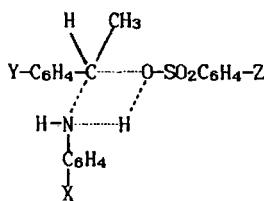
$$\propto |\Delta r_{YZ}^t| = r_{YZ}^t - r_{YZ}^0, \text{ with } r_{YZ}^t > r_{YZ}^0$$

$$\propto r_{YZ}^t, \text{ since } r_{YZ}^0 = \text{constant.}$$

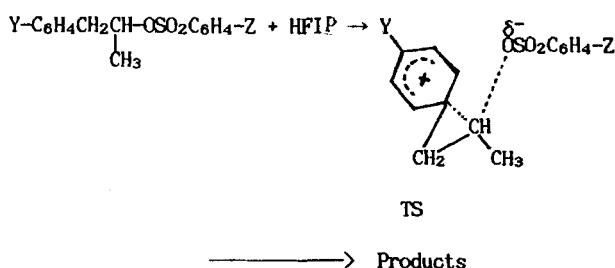
An example is the ρ_{YZ} value for an S_N1 reaction, for which a large ρ_{YZ} is obtained. For the solvolyses of α -*tert*-butylbenzyl (Y) arenesulphonates (Z), ρ_{YZ} was 0.4–0.5 [the ρ_{YZ} values were estimated for the solvolyses of α -*tert*-butylbenzyl (Y) arenesulphonates (Z) in 80% aqueous acetone and 80% aqueous ethanol using Y = *p*-*tert*-butyl, *m*-CH₃, *m*-Cl, *m*-CN, *p*-CF₃, *m*-NO₂, *p*-CN and *p*-SO₂Me and Z = *p*-CH₃ and *m*-NO₂, taken from Ref. 15]. There can be exceptional cases where F_{ij}^t is abnormally large or small so that $|\rho_{YZ}|$ is abnormally small or large, or in some cases F_{ij}^t can be greater than F_{ij}^0 and hence $\Delta F_{ij}^t > 0$ for i, j = Y, Z:

- (i) multiple interaction paths exist in the TS by hydrogen-bond bridge formation;
- (ii) bond contraction takes place in the TS;
- (iii) resonance shunt occurs.

Examples are as follows. (i) In the reactions of 1- and 2-phenethyl benzenesulphonates with anilines, a four-centre TS is possible by a hydrogen-bond bridge providing dual interaction routes:



Thus $\Delta F_{YZ}^t = F_{YZ}^t - F_{YZ}^0$ = small and hence $|\rho_{YZ}|$ is small ($\rho_{YZ}^H = 0.11$ and 0.07 respectively),¹⁶ since F_{YZ}^t is enhanced, i.e. $F_{YZ}^t \approx F_{YZ}^0$. (ii) In the solvolysis of 1-phenyl-2-propyl arenesulphonates in hexafluoroisopropanol (HFIP), aryl participation results in a TS in which one C–C bond is bypassed between σ_Y and σ_Z , and F_{YZ}^t can be substantially greater than F_{YZ}^0 , hence a large $|\rho_{YZ}|$ (= 0.41) is obtained:¹⁷



Rough estimates of bond length changes (based on values in Ref. 18) during the activation process, i.e. reduction of one C–C bond and stretching a C–O bond, give a *ca* 1.0 Å decrease in the distance between the two substituents through reaction centres:

$$\Delta d_{(\text{C-C})}^t \approx -1.53 \text{ \AA} \text{ (reduction of one C-C bond)}$$

$$\Delta r_{(\text{C-O})}^t \approx 1.91 - 1.42 \approx 0.50 \text{ (stretching of C-O bond, assuming ca 35\% stretching at the TS)}^{19}$$

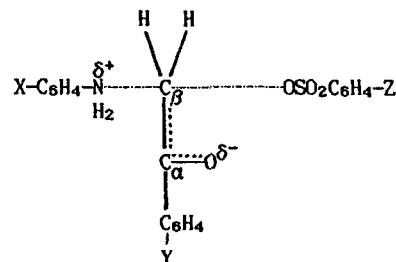
$$\text{Total } \Delta d^t = -1.53 + 0.50 \approx -1.0 \text{ \AA}$$

Hence

$$\Delta F_{YZ}^t \gg 0$$

(iii) In the reactions of phenacyl arenesulphonates with anilines, the charge transfer from the nucleophile leaks to the carbonyl oxygen so that interaction between σ_Y and σ_Z is reduced, leading to an enhanced $|\rho_{YZ}|$ and hence a greater value of $|\rho_{YZ}|$ (= 0.62) is obtained,^{13b} since F_{YZ}^t is abnormally low:

$$\Delta F_{YZ}^t = \Delta F_{YZ}^t - \Delta F_{YZ}^0 \ll 0$$



The interaction between substituents Y and Z is considerably reduced since the electron density change on C- β is strongly coupled to the carbonyl oxygen rather than to Y.

ACKNOWLEDGEMENTS

We thank the Korea Science and Engineering Foundation and the Ministry of Education for support of this work.

REFERENCES

- (a) I. Lee, *Chem. Soc. Rev.* **19**, 317 (1990); (b) I. Lee, *Adv. Phys. Org. Chem.* **27**, 57 (1991).
- I. Lee, C. S. Shim, S. Y. Chung, H. Y. Kim and H. W. Lee, *J. Chem. Soc., Perkin Trans. 2* 1919 (1988).
- (a) D. J. McLennan, *Tetrahedron* **34**, 2331 (1978); (b) B.-L. Roh, *Can. J. Chem.* **57**, 255 (1979); (c) I. Lee, H. K. Kang and H. W. Lee, *J. Am. Chem. Soc.* **109**, 7472 (1987).
- (a) I. Lee, J. K. Cho and C. H. Song, *J. Chem. Soc., Faraday Trans. 2* **84**, 1177 (1988); (b) I. Lee, J. K. Cho, H. S. Kim and K. S. Kim, *J. Phys. Chem.* **94**, 5190 (1990).

5. (a) R. M. Badger, *J. Chem. Phys.* **3**, 710 (1934); (b) R. M. Badger, *Phys. Rev.* **48**, 284 (1935); (c) J. Waser and L. Pauling, *J. Chem. Phys.* **18**, 618 (1950); (d) R. M. Badger, *J. Chem. Phys.* **3**, 710 (1934).
6. S. Wold and M. Sjöström, in *Correlation Analysis in Chemistry*, edited by N. B. Chapman and J. Shorter, Chapt. 1. Plenum Press, New York (1978).
7. (a) I. Lee, *J. Chem. Soc., Perkin Trans. 2* 943 (1989); (b) I. Lee, *Chem. Soc. Rev.* **19**, 133 (1990).
8. H. S. Johnston, *Gas Phase Reaction Rate Theory*, p. 169. Ronald Press, New York (1966).
9. H. S. Johnston, *Gas Phase Reaction Rate Theory*, p. 70. Ronald Press, New York (1966).
10. (a) I. Lee, *Bull. Korean Chem. Soc.* **9**, 179 (1988); (b) O. Exner, in *Advances in Linear Free Energy Relationships*, edited by N. B. Chapman and J. Shorter, Chapt. 1. Plenum Press, New York.
11. (a) W. P. Jencks, *Chem. Rev.* **85**, 511 (1985); (b) J.-E. Dubois, M.-F. Ruasse and A. Argile, *J. Am. Chem. Soc.* **106**, 4840 (1984); (c) I. Lee, *Bull. Korean Chem. Soc.* **8**, 200 (1987).
12. (a) G. W. Klumpp, *Reactivity in Organic Chemistry*, pp. 274–282. Wiley, New York (1982); (b) N. S. Isaacs, *Physical Organic Chemistry*, p. 131. Longman, Harlow (1987); (c) K. J. Laidler, *Chemical Kinetics*, p. 211. Harper and Row, New York (1987); (d) O. Exner, in *Advances in Linear Free Energy Relationship*, edited by N. B. Chapman and J. Shorter, pp. 8–9. Plenum Press New York (1972); (e) J. W. Larson and L. G. Hepler, in *Solute–Solvent Interactions*, edited by J. F. Coetzee and C. D. Ritchie, pp. 31–34. Marcel Dekker, New York (1969); (f) J.-E. Dubois and M. Marie de Ficquelmont-Laizos, *Tetrahedron Lett.* 635 (1973); (g) O. Exner, *Prog. Phys. Org. Chem.* **10**, 411 (1973); (h) I. Lee, *J. Korean Chem. Soc.* **7**, 211 (1963); (i) I. Lee, *Bull. Korean Chem. Soc.* **9**, 179 (1988).
13. (a) I. Lee, S. C. Sohn, Y. J. Oh and B. C. Lee, *Tetrahedron* **42**, 4713 (1986); (b) I. Lee, C. S. Shim, S. Y. Chung and H. W. Lee, *J. Chem. Soc., Perkin Trans. 2* 975 (1988).
14. I. Lee, H. J. Koh, B.-S. Lee, D. S. Sohn and B. C. Lee, *J. Chem. Soc., Perkin Trans. 2* 1741 (1991).
15. Y. Tsuji, M. Fujio and Y. Tsuno, *Bull. Chem. Soc. Jpn.* **63**, 856 (1990); M. Fujio, M. Goto, T. Susuki, I. Akasaka, M. Mishima and Y. Tsuno, *Bull. Chem. Soc. Jpn.* **63**, 1146 (1990); M. Fujio, M. Goto, T. Susuki, M. Mishima and Y. Tsuno, *J. Phys. Org. Chem.* **3**, 449 (1990).
16. (a) I. Lee, H. Y. Kim, H. K. Kang and H. W. Lee, *J. Org. Chem.* **53**, 2678 (1988); (b) I. Lee, Y. H. Choi, H. W. Lee and B. C. Lee, *J. Chem. Soc., Perkin Trans. 2* 1537 (1988).
17. I. Lee, W. H. Lee, H. W. Lee and B. C. Lee, *J. Chem. Soc., Perkin Trans. 2* 785 (1991).
18. L. E. Sutton (Ed.), *Tables of Interatomic Distances and Configuration in Molecules and Ions*, Special Publication No. 18, Chemical Society, London (1965).
19. I. Lee, C. K. Kim and B.-S. Lee, Unpublished results.